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SUMMARY

Computer models can provide the basis for real-time monitoring and control of �uid �ow in pipelines.
Problems of �uid �ow in pipelines are mathematically represented by a non-linear system of coupled
partial di�erential equations. In this paper, several numerical techniques are evaluated with respect
to their suitability for the purpose of real-time monitoring of �uid �ow in pipelines. The proposed
techniques are evaluated in terms of the L1, the L2, and the L∞ error norms. Moreover, the developed
simulators will be compared in terms of their speed of response and settling time which are essential
factors for an e�ective real-time monitoring scheme. Finally, the selected simulation scheme is further
tested under assumed pipeline leak conditions. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The operation of pipelines carrying vital �uids is of prime concern from safety and economic
points of view. The safe and optimal operation of these pipelines can be e�ectively and
economically achieved via computer-based operation monitoring with much reduced need for
otherwise expensive sensors and hardware. Nowadays, system-based techniques implemented
on fast computers can replace the heavily instrumented pipeline con�gurations, which are
costly to install and maintain, in achieving safe and optimal pipeline operation. The success
of such techniques for pipelines monitoring and control hinges on the development of reliable
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computer simulation models. This paper is aimed at developing computer models suitable for
online monitoring of pipeline operations.
It has become evident that real-time monitoring and leak detection schemes in pipelines,

based on transient �ow models, are gaining interest among researchers in recent years. Several
authors have addressed the numerical solution of the problem of �uid �ow in pipelines for
di�erent purposes. For example, transients in natural gas pipelines were investigated using the
classical method of characteristics by Stoner [1], and Yow [2]. Thompson and Skogman [3]
addressed the problem of real-time �ow modelling and emphasized its potential for e�ective
monitoring schemes. However, they did not evaluate any speci�c numerical scheme in that
regard. Liou and Tian [4] considered pipeline monitoring for leak detection on the basis of the
classical method of characteristics. Also, Choy et al. [5] used numerical techniques to study
pressure transients in �uid pipelines resulting from valve closures. Based on their �ndings,
they concluded that models based on �nite di�erence techniques could be more e�cient than
those based on the classical method of characteristics, and at the same time are numerically
stable. The success of real time monitoring schemes based on transient �ow models is highly
dependent on performance characteristics like computational accuracy, speed of response, and
settling time. With that in mind, this paper aims at presenting comparative investigations to
evaluate the computational performance of several numerical techniques as applied to transient
�ow in pipelines. The paper also provides measures by which one can select a computer model
suitable for e�ective online monitoring of pipelines operating under fast dynamic conditions
and the possibility of occurrence of a sudden event of a small magnitude such as a leak.

2. DEVELOPMENT OF PIPELINE COMPUTER SIMULATION MODELS

2.1. Physical modeling of �uid �ow in a pipeline

We consider the �ow of a compressible �uid in a straight segment of a pipeline, with constant
cross-sectional area ‘A’, where the pipe wall friction being the only contributor to pressure
drop through the pipe. The friction factor ‘f’ is assumed to be constant along the length of the
pipe, and the pressure drop due to friction is given by Darcy–Weisbach formula. Further, we
assume a one-dimensional isothermal �ow with velocity much less than the acoustic velocity.
Applying the mass and momentum balance conditions on a control volume of length dz and
with the same cross section as the pipe, one gets the following PDE representing the dynamics
of gas �ow in the pipeline,

pt +
a2

A
qz=0 (1)

qt + Apz +
fa2

2AD
q|q|
p
+

Ag sin  
a2

p=0 (2)

where p≡p(t; z) is the pressure at location z and time t, q≡ q(t; z) is the �ow rate at location
z and time t, and the subscript t stands for the �rst derivative with respect to time, and the
subscript z stands for the �rst derivative with respect to distance along the pipeline axis.
Details of the derivation of this model are as given in Appendix A. Equations (1) and (2)
are given for no leak conditions (i.e. qL =0).
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The wave speed a in the above equations accounts for the pipeline elastic e�ects as well
as the �uid physical properties as given by the following expression [6].

a=

√
K=�

1 + KD(1− �2)=E�
(3)

The above wave speed expression is obtained from the basic derivation of the mass conser-
vation equation of unsteady �ow when the pipe elastic deformations are considered.
The initial and boundary conditions of the above problem are stated as follows:

p(z; 0)=p(z) initial pressure distribution

q(z; 0)= q(z) initial �ow distribution

p(0; t)=p0 inlet pressure

p(L; t)=pe exit pressure

In order to apply the above physical model to the problem of computer-based online mon-
itoring of gas �ow, one needs to employ a suitable numerical scheme. Such a numerical
scheme must be able to simulate the system response due to fast dynamics, which can result
from normal operational conditions, as well as being accurate enough to be able to detect
events of relatively small magnitudes. Therefore, in this paper we are going to evaluate sev-
eral available numerical techniques in that regard. Measures will be developed and used to
evaluate such techniques as related to their accuracy as well as their ability to track system
transient following fast dynamic operating condition.

2.2. Discretization techniques

Consider a pipe of length L, cross-sectional area A, inner diameter D, and constant slope  .
For simplicity of notation, let

r1 =
a2�t
A�z

; r2 =
A�t
�z

; r3 =
fa2�t
2AD

; r4 =
Ag sin  �t

a2
(4)

2.2.1. Alternating-space methods. In this scheme, space derivatives are evaluated using an al-
ternating discretization procedure. The space derivative of pressure is evaluated using forward
di�erence and that of �ow rate is evaluated using backward di�erence. The time-derivatives
of both pressure and �ow rate, however, are evaluated using backward di�erence. This dis-
cretization is motivated by physical insight where pressure di�erential is the driving force for
the �ow, and by the fact that in many practical situations, such as monitoring of pipeline
leaks, the exit pressure rather than the exit �ow is known. Therefore, the involved partial
derivatives are substituted by(

@p
@t

)t+�

i
=

pt+1
i − pt

i

�t
+O(�)

(
@q
@t

)t+�

i
=

qt+1
i − qt

i

�t
+O(�)
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pt
i+1 − pt
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(5)(
@q
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i
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qt
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After some manipulations, the di�erential equations (1) and (2) are transformed into the
following di�erence equations:

pt+1
i + r1�qt+1

i − r1�qt+1
i−1 =pt

i − r1(1− �)qt
i + r1(1− �)qt

i−1 (6)

qt+1
i + r2�pt+1

i+1 − r1�pt+1
i = qt

i − r1(1− �)pt
i+1 + r1(1− �)pt

i

−r3
qt
i |qt

i |
pt

i
− r4pt

i (7)

It is noteworthy to point out that when �=0 the above discretization scheme is an explicit
forward-time alternating-space (FTAS) scheme of �rst order, i.e. �=�t. And for �=1 it is
an implicit backward-time alternating-space (BTAS) �rst order, i.e. �=�t, scheme. While for
�=0:5, the discretization scheme is an implicit centred-time alternating-space (CTAS) scheme
of second order, i.e. �=(�t=2)2. Substituting Equations (5) into Equations (1), and (2) it
follows that Equations (6) and (7) above have numerical errors of order O((�t)3=4;�z�t)
for �=0:5.

2.2.2. Centred-space methods. In this �nite-di�erence scheme, the space derivatives of both
pressure and �ow are evaluated using central di�erence. The time derivatives of both pressure
and �ow rate are evaluated using backward di�erence. Therefore, the partial derivatives of
Equations (1) and (2) are approximated as follows:

(
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+O(�)
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i+1 − pt+1

i−1
2�z

+ (1− �)
pt

i+1 − pt
i−1

2�z
+O(�z2)

(
@q
@z

)t+�

i
= �

qt+1
i+1 − qt+1

i−1
2�z

+ (1− �)
qt
i+1 − qt
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+O(�z2)

Therefore, the governing partial di�erential equations can be approximated by the following
di�erence equations:

pt+1
i +

r1
2

�qt+1
i+1 − r1

2
�qt+1

i−1 =pt
i − r1

2
(1− �)(qt

i+1 − qt
i−1) (9)
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qt+1
i +

r2
2

�pt+1
i+1 − r2

2
�pt+1

i−1 = qt
i − r2

2
(1− �)pt

i+1 +
r2
2
(1− �)pt

i−1

−r3
qt
i |qt

i |
pt

i
+ r4pt

i (10)

The constant parameter � is used to control the numerical scheme to give the following
alternatives;

• For �=0, an explicit forward-time centred-space (FTCS) scheme of �rst order �=�t;
• For �=1:0, an implicit backward-time centred-space (BTCS) scheme, a Crank–Nicolson
scheme [7], of �rst order �=�t;

• And, for �=0:5, an implicit centred-time centred-space (CTCS) scheme, alternative
Crank–Nicolson scheme [7], of second order �=(�t=2)2.

Substituting Equations (8) into Equations (1), and (2) it follows that Equations (9) and (10)
above have numerical errors of order O((�t)3=4; (�z)2�t) for �=0:5.

2.2.3. A predictor–corrector method. A predictor–corrector technique can be based on the
method of MacCormack (MC), which involves the propagation of the numerical solution in
time using Taylor’s series in conjunction with space-derivative approximations using both
forward and backward �nite di�erences [8]. The method is employed here to develop a
predictor–corrector simulation scheme for the pipeline �ow problem at hand. Consider the
pipeline to be segmented by equally spaced nodes separated by segments of equal length �z.
Also, consider the time to be discretized by time increments of �t. Let pt

i , q
t
i be the com-

puted pressure, and �ow rate at node i and time step t. Employing a second order Taylor’s
series expansion, the solution can be advanced to time step t + 1 as follows:

pt+1
i =pt

i +
(
@p
@t

)t
i
�t +

1
2

(
@2p
@t2

)t
i
�t2 +O(�t3) (11)

where the second order partial derivative is approximated by

(
@2p
@t2

)t
i
=
(@p=@t)t+1i − (@p=@t)ti

�t
+O(�t) (12)

Substituting for the �rst partial derivative of the pressure with respect to time using Equa-
tion (1), the solution of Equation (11) can then be expressed as

pt+1
i =pt

i − 1
2

a2

A

[(
@q
@z

)t+1
i
+
(
@q
@z

)t
i

]
�t +O(�t3) (13)

Further, the �rst partial derivatives of the �ow rate with respect to space are approxima-
ted by

(
@q
@z

)t+1
i
=
�qt+1
i − �qt+1

i−1
�z

+O(�z) and
(
@q
@z

)t
i
=

qt
i+1 − qt

i

�z
+O(�z) (14)
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Therefore, the computed pressure is advanced in time according to,

pt+1
i =pt

i − 1
2
r1[(qt

i+1 − qt
i ) + ( �q

t+1
i − �qt+1

i−1)] +O((�t)3;�z�t) (15)

where, the values with over bar are predicted according to,

�qt+1
i = qt
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i+1 − pt

i )− r3

(
qt
i |qt

i |
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i

)
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i +O((�t)2;�z�t) (16)

Similarly, advancing the solution for the �ow rate,

qt+1
i = qt

i +
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i
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2

(
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)t
i
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where (
@2q
@t2

)t
i
=
(@q=@t)t+1i − (@q=@t)ti

�t
+O(�t) (18)

Substitute for the �rst partial derivative of �ow rate with respect to time using Equation (2),
then substitute for the pressure space derivatives using(

@p
@z

)t+1
i
=
�pt+1
i − �pt+1

i−1
�z

+O(�z) and
(
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Finally, the computed �ow rate is advanced in time according to

qt+1
i = qt

i − 1
2
r2[(pt

i+1 − pt
i ) + ( �p

t+1
i − �pt+1

i−1)]

−1
2
r3

(
qt
i |qt

i |
pt

i
+
�qt+1
i | �qt+1

i |
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And the predicted values of the pressure are given by

�pt+1
i =pt

i − r1(qt
i+1 − qt

i ) +O((�t)2;�z�t) (21)

In summary, the predictor equations are given by

�pt+1
i =pt

i − r1(qt
i+1 − qt

i ) (22)

�qt+1
i = qt

i − r2(pt
i+1 − pt

i )− r3

(
qt
i |qt

i |
pt

i

)
− r4pt

i (23)

where the predictor’s numerical accuracy is O((�t)2;�z�t). The corrector equations are
given by

pt+1
i =pt

i − 1
2r1[(q

t
i+1 − qt

i ) + ( �q
t+1
i − �qt+1

i−1)] (24)
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where the corrector’s numerical accuracy is O(�t3;�t�z).

3. NUMERICAL SIMULATIONS

In this paper, three numerical schemes are used to develop computer models to simulate the
transient �ow of gas in a pipeline. The physical model of such a problem is non-linear as
given by Equations (1) and (2). Therefore, one could not simply rely on the known orders
of accuracy of the discretization schemes. It becomes necessary to test the accuracy of the
models via numerical simulations. In conducting such numerical simulations, a horizontal
straight pipeline is considered with data as listed in Table I.

3.1. Flow rate and pressure computation

The computed pressure pro�les along the pipeline, as obtained by using the three simulation
models developed in this paper, are shown in Figure 1. Similarly, the computed �ow rate
pro�les are given in Figure 2. Both pressure and �ow rate pro�les are presented at several
times, in order to show the growth of these pro�les towards their respective steady state
pro�les. Also, the computed time-response of both pressure and �ow rate are as displayed
in Figures 3 and 4, respectively, at several nodal points. These results indicate that the three
developed simulation models are capable of providing numerically stable solutions for the
pipeline �uid �ow problem. It is noticed that the CTCS method exhibits some oscillations
in the steady state �ow rate solution. The magnitude of such oscillations diminishes as the
discretization grid is re�ned.

3.2. Characterization of the simulators numerical performance

To facilitate the quantitative comparison of the developed numerical simulators, the L1-norm,
L2-norm, and the L∞-norm of their respective computational errors, as de�ned next, will be
evaluated.

Table I. Pipeline parameters.

Parameter Value

Pipeline length 90 km
Pipe cross-sectional area 1 m2

Wave speed 300 m=s
Pipe wall friction coe�cient 0.003
Inlet pressure 1:5 bar
Outlet pressure 1:0 bar
Inlet pressure step, Ps 2:0 bar
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Figure 1. Pressure pro�les using di�erent methods.

Et
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1
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i=1

|X ss
i − X t

i |
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√
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(
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(26)

Et
3 = Max

16i6N

( |X ss
i − X t

i |
Xo

)

The symbols used in Equation (26) are de�ned as

X t
i ≡The computed value of pressure or �ow rate at the ith node and time t.

X ss
i ≡The true steady-state value of pressure or �ow rate at the ith node.

Xo ≡A normalizing factor, which is de�ned as follows:
Xo= qss; for the �ow rate calculations, and
Xo=Ps; for pressure calculations,

where, qss represents the steady-state value of the �ow rate through the pipeline, and Ps
is the value of the applied input pressure step. In the steady state, Equations (1) and (2)
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Figure 2. Flow rate pro�les using di�erent methods.

reduce to

dq
dz
=0 (27)

dp
dz
=− fa2

2A2D
q2

p
(28)

Hence, in the steady state the �ow rate is constant along the pipeline, and the pressure pro�le
is such that p2 varies linearly with z. And, upon integration of Equation (28) using the
following boundary conditions:

p=Po at z=0; and

p=PN at z=L
(29)

The steady-state �ow rate qss is obtained as

qss =

√
A2D

fa2

(
P20 − P2N

L

)
(30)
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Figure 3. Pressure time-response at locations L=4; L=2 and 3L=4.

Values of the error norms for the three methods are given in Tables II, and III, for three
di�erent grid sizes. The time histories of the errors are as shown in Figures 5, and 6. The
results indicate that, the error norms for the three methods are more sensitive to space dis-
cretization than time discretization. Moreover, the results indicate that both CTCS, and MC
methods are superior in their numerical accuracy to the CTAS method. It is also noticed that
re�ning the mesh size, doubling the number of nodes, results in a pronounced improvement
in the accuracy of the CTCS method, which approaches the level of accuracy of the MC
method.
Other measures of the transient performance characteristics for the three numerical schemes

are given in terms of the rise time and settling time. The rise time is de�ned as the time
taken by each method for the computed �ow rate at the end node to reach 90% of its steady-
state value. The settling time, however, is characterized as the time taken by each method for
the computational errors, in terms of the error norm E3, the most conservative of the three
error norms, to settle within 5% envelop. These time-response characteristics are displayed in
Table IV for the di�erent methods with three di�erent mesh sizes in each case.
It is interesting to note that the CTAS attains a relatively shorter rise time and settling time

than the other two methods. The faster response characteristics of the CTAS, however, are
penalized by lower accuracy. Both the CTCS and MC methods attain nearly the same rise
time and settling time, as displayed in Table IV.

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 44:257–275



SIMULATION OF TRANSIENT FLOW IN PIPELINES 267

0 500 1000 1500 2000 2500
0

25

50

75

100

Time in seconds

(iii) CTAS

0

25

50

75

100
(ii) CTCS

0

25

50

75

100

F
lo

w
 r

at
e 

(k
g/

s)
F

lo
w

 r
at

e 
(k

g/
s)

F
lo

w
 r

at
e 

(k
g/

s)

(i) MC

L/4 L/2 3L/4

Figure 4. Flow rate time-response at locations L=4; L=2 and 3L=4.

Table II. Pressure error norms.

Error norm E1 E2 E3

Case (1): N =21, �t=2 s
CTAS 0.656 0.168 1.190
CTCS 0.491 0.132 0.660
MC 0.240 0.061 0.410

Case (2): N =41, �t=2 s
CTAS 0.460 0.0810 0.7680
CTCS 0.140 0.0302 0.3565
MC 0.153 0.0270 0.2410

Case (3): N =41, �t=1 s
CTAS 0.456 0.0812 0.7680
CTCS 0.1405 0.0301 0.3554
MC 0.1560 0.0270 0.2440
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Table III. Flow rate error norms.

Scheme E1 E2 E3

Case (1): N =21, �t=2 s
CTAS 1.526 0.333 1.526
CTCS 0.682 0.148 0.684
MC 0.234 0.065 0.82

Case (2): N =41, �t=2 s
CTAS 0.77 0.1225 0.9786
CTCS 0.21 0.041 0.5048
MC 0.203 0.0397 0.804

Case (3): N =41, �t=1 s
CTAS 0.765 0.1223 0.978
CTCS 0.2099 0.0408 0.5032
MC 0.180 0.033 0.478
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Figure 5. Error norms for computed pressure vs time.
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Figure 6. Error norms for computed �ow rate vs time.

Table IV. Time response characteristics.

Rise Settling Rise Settling Rise Settling
time time time time time time

Scheme N =21, �t=2 s N =41, �t=2 s N =41, �t=1 s

CTAS 1616 2202 1688 2114 1686 2111
CTCS 1836 2348 1786 2252 1784 2249
MC 1798 2282 1786 2262 1778 2237

4. SIMULATION OF A PIPELINE INCLUDING A LEAK

4.1. Pipeline physical model including a leak

As the main objective is the development of an on-line monitoring capability, the MC based
simulator is used to investigate the e�ects of a leak occurring in the pipeline. Consider an
elemental length �z of the pipe at a distance z from one end with the same cross-section as
the pipe. Assume that a leak of magnitude qL is present in this element. The dynamic model
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Figure 7. Pressure pro�le (leak onset at 12 000 s, Aleak=A=0:003).

of the gas �ow in this case is given by

@p
@t
+

a2

A
@q
@z
+

a2

A�z
qL = 0 (31)

@q
@t
+ A

@p
@z

− a2

A�z

(
q
p

)
qL =− p

a2
Ag sin  − f

2D
a2

A
q|q|
p

(32)

Details of the derivation of this model are given in Appendix A.

4.2. Investigation of leak e�ects via simulation

The pipeline simulation example presented in Section 3 is considered here under the in�uence
of a leak. The e�ects of a 10% leak occurring at 1200 s while the �ow is still in the transient
phase are investigated. Figure 7 shows the progression of the pressure pro�le, while Figure 8
gives a graphical comparison of the steady state pressure pro�les under no leak and leak
conditions. It is clear that the simulation captures the e�ect of the leak as the pressure pro�le
is lowered all over the pipeline length. Figure 9 shows the progression of the �ow rate pro�le
from the transient phase all the way to the steady state under leakage conditions. Figure 10
shows the time response of the �ow rate at two nodes, one upstream of the leak and the
other down stream of the leak. Again the simulation vividly captures the e�ect of the leak
on the �ow pattern. As the pressure gets lower at the leak location, the upstream �ow rate is
increased while the down stream �ow rate is decreased. The net di�erence between the �ow
rates on both sides of the leak equals the magnitude of the leak �ow rate.
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14

14.8

14.6

14.4

14.2

15

15.8

15.6

15.4

15.2

16

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/L

F
lo

w
 r

at
e 

(k
g

/s
)

t = 12000s

t = 16000s

t = 20000s

Figure 9. Flow rate pro�le with leak onset at t=12 000 s.

5. CONCLUSIONS

Real time pipeline simulators can be developed on the basis of the numerical schemes pre-
sented in this paper as these schemes provide stable simulations with suitably fast response.
The CTCS method showed small oscillations around the true steady state value of the �ow
rate. Such oscillations resulted from the accumulated numerical errors at the end node, which
gradually propagated backward through the pipeline. The amplitude of such oscillations is re-
duced as the number of nodes is increased. The CTAS method while being free of oscillating
error, it exhibits a residual error, i.e. steady-state bias, in its computed �ow rate. The MC
method gives the most accurate results of the three methods. The results also show that the
accuracy of the CTCS approaches the accuracy of the MC method, as the mesh size is re�ned.
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Figure 10. Flow rate response with leak onset at t = 12 000 s.

The MC based simulator is further tested in terms of its suitability as an on-line monitoring
scheme for pipeline operation. The simulator is shown to be capable of e�ectively capturing
the e�ects of a small leak and at the same time having a reasonably fast dynamic response.

APPENDIX A: DERIVATION OF THE PIPELINE FLOW PHYSICAL MODEL

Ψ

z

∆z

qL

Flow

Consider an elemental length �z of the pipe at a distance z from the inlet. Assume that a
leak of magnitude qL is present in this element. The e�ect of this leak on the continuity and
momentum equations is obtained as follows:

A.1. Continuity equation

By mass balance across the element of length �z, we have

ṁin − ṁout = ṁaccumulated

ṁin = (�Aw)z
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ṁaccumulated =
@
@t
(�A�z)

(�Aw)z −
(
(�Aw)z +

@
@z
(�Aw)z�z + qL

)
=

@
@t
(�A�z)

A�z
@�
@t
+ A�z

@(�w)
@z

+ qL =0

@�
@t
+

@(�w)
@z

+
qL

A�z
=0

Since a2 =p=�, we have �=p=a2.
Also, q=�Aw ⇒ �w= q=A
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A.2. Momentum balance

Rate of change of momentum=� Forces

Ṁin − Ṁout + Ṁelement =G + P + F

Ṁin = (�Aw):w

Ṁout =�Aw:w +
@
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(�Aw:w) dz + qL:w
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Assuming the �ow velocity w to be much less than the acoustic velocity, (w�a), the term
@(�w2)=@z becomes negligibly small and can be ignored. Also, expressing w in terms of �ow
rate q and expressing � in terms of p, we get
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It should be noted that the derivation of the physical model given by Equations (1) and (2)
follows the same steps in this appendix with qL set equal zero.

APPENDIX B

Nomenclature
a wave speed (m=s)
A cross-sectional area of the pipe (m2)
L length of pipeline (m)
D pipe diameter (m)
E elasticity modulus of the pipeline material (N=m2)
f friction coe�cient
g acceleration of gravity (m=s2)
K bulk modulus (N=m2)
p �uid pressure (bar)
q �uid �ow rate (kg=s)
t time (s)
E1; E2; E3 various computational errors
z longitudinal axis of the pipe
� �uid density (kg=m3)
� Poisson’s ratio of the pipeline material
� pipe wall thickness (m)
 pipeline inclination angle with the horizontal (deg)
� a constant parameter
�t time step (s)
�z space step along pipe axis (m)
N number of nodes of the pipeline

Subscripts
i nodal index
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Superscripts
t time index
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